Die Leistungserzeugung durch die "Erneuerbaren Energien" unterliegt, abhängig von der Energiequelle (Solar, Wind),
Read MoreHeute werfen wir einen Blick auf sehr gute und schlechte Phasen der Leisungserzeugung. Dabei bertrachten wir die summierte
Read More@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-04-01 UTC
@ 2025-03-31 12:30:00+00:00 UTC
2025-04-02 (Wednesday)
88.0 | 20.0
2025-04-03 (Thursday)
76.0 | 14.0
2025-04-04 (Friday)
66.0 | 12.0
2025-04-05 (Saturday)
77.0 | 13.0
2025-04-06 (Sunday)
80.0 | 21.0
Sie betrachten die Kurzzeitprognose für die kombinierte Stromerzeugung aus Solar-, Onshore- und Offshore-Windenergie. Die schwarze gepunktete Linie zeigt die prognostizierten Werte in Megawatt und bezieht sich auf die linke y-Achse.
Die violetten Punkte stellen die prognostizierten Werte für die Netzlastabdeckung dar. Diese wird berechnet, indem die Prognosen für die Solar-, Onshore- und Offshore-Windparks summiert und durch die prognostizierte Netzlast dividiert werden. Die orangefarbenen Punkte zeigen die prognostizierten Werte für die erwartete Kapazitätsauslastung, d. h. den Prozentsatz der installierten Leistung, die voraussichtlich erreicht wird.
Das Diagramm ist in Quadranten unterteilt, um die Interpretation zu erleichtern. Die beiden Quadranten links von der vertikalen Linie „Vergangenheit | Prognose“ zeigen die in der Vergangenheit realisierten Leistungswerte, die aus der Summe der Solar-, Onshore- und Offshore-Stromerzeugung berechnet wurden. Rechts von der Linie sehen Sie die prognostizierten Werte für Stromerzeugung, Last und Kapazitätsauslastung. Im oberen rechten Quadranten spiegeln die violetten Punkte eine erwartete Netzlastabdeckung von mehr als 50 Prozent der prognostizierten Nachfrage wider. Im unteren rechten Quadranten werden hingegen Szenarien dargestellt, in denen die erwartete Abdeckung unter 50 Prozent liegt. Eine ähnliche Interpretation gilt für die orangefarbenen Punkte, die die prognostizierte Kapazitätsauslastung darstellen.
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-04-01 UTC
@ 2025-03-31 12:30:00+00:00 UTC
You are observing the short-term forecast for the power output of solar -farms
Furthermore, the expected percentage of net load reach and capacity reach are depicted.
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-04-01 UTC
@ 2025-03-31 12:30:00+00:00 UTC
You are observing the short-term forecast for the power output of onshore -farms
Furthermore, the expected percentage of net load reach and capacity reach are depicted.
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-04-01 UTC
@ 2025-03-31 12:30:00+00:00 UTC
You are observing the short-term forecast for the power output of offshore -farms
Furthermore, the expected percentage of net load reach and capacity reach are depicted.
Anzeige vergangener Werte der Leistungsabgabe der einzelnen Quellen und ihr summierter Wert. Außerdem wird die Netzlast angezeigt. Wir stellen die prognostizierten Werte als Punktprognosen dar. Bitte wählen Sie Daten aus und filtern Sie sie, indem Sie auf die Legende klicken.
In Germany, the power grid is divided into four regulatory zones, known as "Regelzonen." These zones correspond to the different Transmission System Operators (TSOs) responsible for managing the grid and balancing electricity supply and demand. Each TSO operates a specific region, ensuring stable power transmission and integrating renewable energy sources efficiently into the grid.
The image on the left illustrates the geographical boundaries of these regulatory zones and the regions they cover. The four TSOs are Amprion, TenneT, 50Hertz, and TransnetBW.
The following three plots depict the forecasts for the different power sources (solar, onshore, offshore wind) for the respective TSOs. Only TenneT and 50Hertz are operating the offshore grid. While TenneT is responsible for the North Sea, 50Hertz operates the Baltic Sea.
-Tennet manages a total combined capacity of: 70986.0 MW
-Amprion manages a total combined capacity of: 35129.0 MW
-50Hertz manages a total combined capacity of: 44277.0 MW
-TransnetBW manages a total combined capacity of: 15516.0 MW
The detailed composition into the different power sources are depicted in the next plot
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
@ 2025-03-31 12:30:00+00:00 UTC
2025-04-01
2025-04-01
2025-04-01
This graphic and following table provide a summary of renewable power capacity growth in Germany from 2005 to 2024, focusing on three sources: offshore wind, onshore wind, and solar. The data highlights the total installed capacity at the end of each year (Kapazitaet (Jahresende)) and annual additions (Hinzugebaut).
Offshore Wind: Offshore wind capacity grew steadily from 5,523 MW in 2017 to 9,215 MW in 2024. Annual additions fluctuated, peaking at 1,286 MW in 2017 and tapering to 742 MW in 2024.
Onshore Wind: Onshore wind showed consistent growth, increasing from 49,722 MW in 2017 to 63,470 MW in 2024. Annual additions ranged from 953 MW in 2019 to 5,523 MW in 2017, with recent years stabilizing around 2,400–3,600 MW.
Solar Energy: Solar experienced the most significant expansion, surging from 38,790 MW in 2017 to 86,428 MW in 2024. Annual additions grew rapidly, with at 13,383 MW in 2023 and peaking at 13,877 MW in 2024. This data showcases Germany’s robust commitment to renewable energy, with solar leading the charge in capacity expansion, while offshore and onshore wind maintain steady growth as vital contributors to the energy mix. It reflects strategic efforts to accelerate the clean energy transition. For a current year, the last update time shown below always applies ("Last updated")
Jahr | Quelle | Hinzugebaut | Kapazitaet [MW] (Jahresende) |
---|
This graphic and following table provides a detailed breakdown of renewable power capacity across German states (Bundeslaender) by power source: onshore wind, solar, and offshore wind. Key metrics include total power capacity (sum_power) for each region.
Onshore-Power: Onshore wind capacity is highest in Lower Saxony with 13150.0 MW, followed closely by Brandenburg 9094.0 MW and Schleswig-Holstein 8997.0 MW emphasizing the strength of wind resources in northern and eastern Germany. Urban states like Bremen, Hamburg, and Berlin contribute minimally, reflecting limited land availability for large-scale wind farms.
Solar-Power: In solar power, Bavaria leads with an impressive 25013.0 MW, thanks to its favorable climate and strong solar infrastructure. Other states such as Baden-Wuerttemberg 11630.0 MW and North Rhine-Westphalia 8096.0 MW also contribute significantly. Coastal regions, including Schleswig-Holstein 3469.0 MW and Mecklenburg-Vorpommern 3846.0 MW , maintain moderate solar capacity.
Offshore-Power: Offshore wind production is concentrated in the North Sea 7387.0 MW and the Baltic Sea 1828.0 MW, highlighting Germany´s strategic use of coastal resources for renewable power. This dataset showcases Germany´s diverse renewable power landscape, shaped by geographic, climatic, and infrastructural factors, while emphasizing the varying capacities of states to harness wind and solar power effectively. It provides insights into regional strengths and priorities in the energy transition.
Bundesland|Lage | Quelle | Installierte Leistung [MW] |
---|
Max 66800 | Min 115.0
The time course of the output produced by solar, onshore and offshore systems ("source") is shown. Here the unambiguous Timestamps from month and year, maximums, minimums and medians are calculated in order to be able to visually delineate seasonal effects, among other things. We observe an astronomical seasonality in the power output of solar systems. Produce in the winter months On average, solar systems have significantly less output than in spring and summer. A comparable derivation for offshore wind and onshore wind is not easily recognizable. This representation enables a first simple observation of the development of the power produced by renewable energies over time.
The above plots illustrate the power distribution across different months and energy sources. Understanding the distribution of actual power production by source and month is crucial for effective power grid management. The distributions are overlaid, and the y-axis is log-transformed to enhance visibility. The x-axis represents power, which is binned into fixed intervals. Percentages are then calculated by counting the number of values within each bin, dividing by the total number of observations, and multiplying by 100. This results in a percentage value for each combination of month, bin, and power source. Users can select or deselect specific months by interacting with the interface, enabling comparative analysis across various dimensions. For instance, a comparison of July and January reveals the typical seasonal pattern for solar power production. In January, the interval with the highest percentage (0.02) of observed values falls between 27,000 and 27,999 megawatts. In contrast, July’s peak interval is between 46,000 and 49,999 megawatts, where 0.09 of values are observed. Offshore power generation appears to exhibit a seasonal signal, albeit much weaker. Onshore wind farm power distribution follows a seasonal pattern similar to that of solar power production. Feel free to explore and analyze the power distributions further on your own.
Max 122 | Min 0.179
This representation shows you what proportion of the network load is achieved by solar, onshore and offshore systems. The three lines show a distribution of the minimums, maximums and medians in a specific month of a year. To do this, the power output of the solar systems and wind turbines (onshore + offshore) is added and linked to the network load in time. The resolution is 15 minutes. This means that there are 96 data pairs of load and performance per day. The percentage is then simply calculated from load/power *100. There are up to 2976 (31 days) individual values per month. The statistics are calculated for the unique combinations of year and month. If we look at May 2024 we observe max = 121.2 median = 43.8 and min = 3.8
Diese Darstellung erlaubt eine erste Analyse der zeitlichen Entwicklung der erreichten Netzlast durch erneuerbare Energien
Melden Sie sich für unseren gratis Newsletter an und erhalten Sie exklusive Benefits
Aktiv
Learn more about renewable power production.
In Entwicklung
Benötigen Sie Hilfe bei den Daten auf dieser Seite oder haben Sie Interesse an einer individuellen Lösung? Buchen Sie ein gratis 15- minütiges Meeting
Aktiv